

Disclaimer

This project has received funding from the European Union’s Horizon 2020 research & innovation
programme under grant agreement No 951832. The document reflects only the authors’ views. The European
Union is not liable for any use that may be made of the information contained herein.

Dissemination level
Public
Type

Report

OPTED
Observatory for Political Texts in European Democracies:
A European research infrastructure

Text preprocessing module

Deliverable 7.3

Authors: Wouter van Atteveldt', Farzam Fanitabasi', Kasper Welbers',

' Department of Communication Science, Faculty of Social Science, Vrije Universiteit Amsterdam

- Executive Summary

The overall objective of WP7 is to establish routines and protocols to standardize the pre-processing of
text, depending on the source and usage purpose. This work package focuses on assessing and providing
prototypes of open science and open data structures in terms of data storage.

As the third step to achieve this objective, D7.3 introduces a collection of multilingual Natural
Language Processing (NLP) tools. As text-as-data techniques are an increasingly important part of social
science research, access to text (pre)processing tools is important for conducting valid and high-quality
research. Although tools for English are widely available, tools for other languages are not always easy to
find or run for users with less technical expertise. Moreover, the computers and environments used for
analysis are not always suitable for processing large amounts of texts.

This deliverable hopes to mitigate these two problems by providing NLPipe, an easily installable
collection of NLP tools that can be run either locally or via a server-worker architecture. By offering a
standard interface for a number of open-source tools that offer multilingual processing, such as UDPipe,
Spacy and gensim, NLPipe will make it easier for both non-technical users and power users to use state of
the art processing tools. Moreover, it will allow the easy integration of other (possibly language-dependent)
tools into the same interface, helping to mitigate the resource scarcity problem of many non-English
languages.

This deliverable consists of the NLPipie codebase, which includes several worker modules that can be
run in conjunction with the server module. This code can easily be run locally, be installed on a lab server, or
as part of the AmCAT 4.0 text analysis infrastructure (D7.1). This codebase is published via the OPTED
website and publicly accessible on the GitHub repository.

- NLPipe Overview

The figure below shows the overall architecture of NLPipe:

= Requests a specific text processing task
to be applied to a certain piece of text
* Checks status of processing tasks
» Downloads the results of processing tasks

— ~
7 — Requests and 5 — Sends task
receives the results request and text

Client 4 - run Client

- .
— ~

« Acts as the system coordinator
« Stores documenis (text)

— E;'l o J / e — = Stores tasks (pre/processing tasks)
3 - Checks every n

sends back the
results second for a new task RESTServer 1 -run RESTServer

— = HTTP Module)
= Checks with the Server for new tasks

1 = Performs specific text processing tasks

« Sends the results of the task back to the Server
Module

Worker 2 - run Worker

In short, the central role is played by the REST server, which acts as the system coordinator and stores
documents to process and results. This server also allocates the tasks to workers and keeps track of progress.

The user connects to the server through one of the available clients, which can be the web client, a command
line client included with the tool, or an API client in Python or R. Using this client, the user can request a
document or set of documents to be processed, which causes it to be sent to the server. The user can also ask
for the status of a job and download the results.

The main advantage of this division is that the server can be managed by more technical researchers or
research engineers, while the client interface remains the same, no matter what political, legislative or
journalistic texts are processed with whatever preprocessing tools. This also means that pre-processing stays
reproducible between researchers who use the same server and is not dependent on the specific
computational environment (operating system, processor architecture and installed software).

The actual processing is performed by the workers. Workers are tied to a specific processing tool (e.g. Spacy
or UDPipe) and connect to the REST server to receive tasks. If a task is received, the worker runs the
processing and sends the result back to the server.

- Installing NLPipe

NLPipe can be used as a standalone tool by installing it via pip (the Python package management tool). This
will run the API on a local port, which can be interacted with via a web browser, the command line NLPipe
interface, and/or API clients in Python, R, or other languages. This options works well for relatively small
amounts of text or individual researchers.

For more demanding setups (see using NLPipe below), the server can be exposed through a standard web
server, and workers can be run on the same or different machines.

- Using NLPipe

The client/server/worker model described above allows for NLPipe to be used in a very versatile way:

- A single researcher might just install nlpipe on their local computer, which would include the server
and workers and allow the researcher to directly process texts from e.g. R or Python. Used in this
way, the tool is simply a standalone service for the user.

- In a research lab, one central computer might be used as an NLPipe server, and multiple researchers
could share this resource and the server could also function as a local storage of results (especially if
connected to an AmCAT interface).

- For very demanding tasks, e.g. full syntactic parsing of hundreds of thousands or millions of
documents, a central computer might act as server, and workers can be activated on multiple
computers to each process part of the corpus. As workers pull jobs from the server one by one, jobs
are automatically distributed over the workers. Since the workers do not need to be reachable from
outside (the workers communicate with the server, not the other way around), these workers can be
run on e.g. idle workstations or High Power Computing (HPC) cluster nodes.

- Given access to the API of AmCAT as described in D7.1, NLPipe can autonomously pull relevant
selected documents, process them and upload the results to the storage server.

- Technologies used

All code is written in Python (>=3.6) using only open source dependencies that are available in the PyPI
repository. The REST server uses Flask (web server) and Peewee (DB manager)'

- NLPipe Components

- NLPipe REST server

All functionality of NLPipe is exposed through a REST server, which allows clients to assign documents for
processing, check status, and download results. This server also exposes an informational HTML index

which can be used to check which tools are available and processing status. The screenshot below shows this
index page running on a local installation:

@ localhost:5001

NLPipe Server

This is the index page of the NLPipe REST API server. The active worker are shown below with their processing status.

Parameters
Serving from: /tmp/nlpipe_ndnz70y8
Workers
Module PENDING STARTED
alpino 0 0
alpinocoref 0 0
alpinonerc 0 0
corefnl 0 0

! This will be refactored to fastAPI+SQLAlchemy/Elastic for a next version to be released via GitHub

- NLPipe workers

NLPipe workers are responsible for processing documents using a single tool (e.g. Spacy). The worker
connects with the server and asks for available tasks. If a task is available, it retrieves it from the server,
processes it, and stores the result. Note that this is generally not exposed to the end user, they simply see that
their task is being processed. By separating the workers from the server it is possible to run workers on
different or multiple machines, e.g. to connect the server with workers on a High Power Computing resource.

As the user does not interact directly with the workers, there is no graphical user interface. The session below
shows running a Spacy worker locally, which automatically downloads the correct language model and
processes a document:

$ python -m nlpipe.Workers.worker http://localhost:5001 spacy

[2022-06-23 17:14:54,656 root INFO] Workers active and waiting for input
[2022-06-23 17:14:59,687 root INFO] Received task spacy/0x9c..53 (25 bytes)
Collecting en-core-web-sm==3.3.0

[2022-06-23 17:14:59,687 root INFO] Task completed: spacy/©x9c..53

- NLPipe clients

To interact with NLPipe, a user uses one of the available clients to initiate processing, check status, and
download results. The session below shows the command line client used to parse a small sentence using
Spacy:

$ python -m nlpipe.Clients.client http://localhost:5001 spacy process "Wouter lives in Amsterdam!"
0x9c..53

$ python -m nlpipe.Clients.client http://localhost:5001 spacy doc_status 0x9c..53
DONE

$ python -m nlpipe.Clients.client http://localhost:5001 spacy result 0x9c..53

text lang_ left_edge right_edge ent_type_ lemma_ morph pos_ dep_

Wouter en Wouter Wouter Wouter Number=Sing PROPN nsubj

lives en Wouter ! live Number=Sing|.. VERB ROOT

in en in Amsterdam in ADP prep

Amsterdam en Amsterdam Amsterdam GPE Amsterdam Number=Sing PROPN pobj

! en ! ! ! PunctType=Peri PUNCT punct
- Included tools

The currently released version of NLPipe (0.58) includes the following tools:

Language-independent tools:
- GenSim [https:/radimrehurek.com/gensim/], a widely-used module for topic modeling and word
embeddings

Multilingual tools:
- UDPipe [https://ufal.mff.cuni.cz/udpipe] - A widely used open source toolkit for tagging and parsing
in 63 different languages
- Spacy [https://spacy.io] - Another widely used open source toolkit for parsing in 22 languages.
- NewsReader [http://www.newsreader-project.cu/| - A pipeline developed in the ERC NewsReader
project that includes multiple processing steps to parse and enrich data, including disambiguation
and semantic role labeling.

https://radimrehurek.com/gensim/
https://ufal.mff.cuni.cz/udpipe
https://spacy.io
http://www.newsreader-project.eu/

- CoreNLP [https:/stanfordnlp.github.io/CoreNLP/] - A pipeline built and maintained by the Stanford
NLP group that offers preprocessing in 8 languages.

Language-specific tools:
- Alpino [http://www.let.rug.nl/vannoord/alp/Alpino/] - a Dutch syntax parser developed at the
University of Groningen
- Frog [http://languagemachines.github.io/frog/] - a Dutch part-of-speech tagger and lemmatizer
- ParZu [https://github.com/rsennrich/ParZu] - a German syntax parser developed at the University of
Zurich
The selection was made based on what is currently widely used and what we consider to be a good fit for
multilingual pre-processing. However, NLPipe was created with flexibility in mind and the currently
available tools are also meant as a blueprint to be extended in the future.

- Contributing to NLPipe and license information

NLPipe is distributed under the MIT license?, which is a widely used permissive Free and Open Source
license approved by the OSI (Open Source Initiative). In brief, this license allows anyone to use, modify, and
distribute the software in any way, including in commercial settings. We actively encourage contributions to
NLPipe and all other CCS-Amsterdam software through GitHub issues and pull requests.

In particular, regular users are encouraged to contribute to NLPipe by using and testing the software,
and reporting any issues, bugs, or feature requests as GitHub issues. Users are also encouraged to contribute
to documentation and examples, either on the GitHub page or as external resources. Technical users are also
encouraged to contribute bugfixes or enhancements as GitHub pull requests. In particular, requests that
contribute to fixing existing bugs, adding more tools, and improving ease of use and accessibility are greatly
appreciated.

2 https://github.com/ccs-amsterdam/nlpipe/blob/main/LICENSE

https://stanfordnlp.github.io/CoreNLP/
http://www.let.rug.nl/vannoord/alp/Alpino/
https://github.com/rsennrich/ParZu

