

OPTED

Deliverable D5.6

Christian Rauh, Péter Gelányi, Lukas Hetzer, Sven-Oliver Proksch, Jan Schwalbach, Miklós Sebők

2

Disclaimer

This project has received funding from the European Union’s Horizon 2020 research & innovation programme

under grant agreement No 951832. The document reflects only the authors’ views. The European Union is not

liable for any use that may be made of the information contained herein.

Dissemination level

PU

Type

DEC/R

3

OPTED

Observatory for Political Texts in European Democracies:

A European research infrastructure

ParlLawSpeech Public Access Website
Deliverable D5.6

OPTED WP5 team

Christian Rauh1/2, Péter Gelányi3, Lukas Hetzer4, Sven-Oliver Proksch4, Jan Schwalbach4/5, Miklós Sebők3

1 WZB Berlin Social Science Center
2 University of Potsdam
3 Institute for Political Science, Centre for Social Sciences, Budapest

4 University of Cologne
5 GESIS Leibniz Institute for the Social Sciences

Due date: September 2023

4

Table of Contents

Purpose 5

Key design principles 6

First set of prototypes: Self-contained Shiny apps 8

Why Shiny? 8

Key functionality of the two prototype apps 10

Downsides of the self-contained solution 11

Prototypes 2: Shiny apps with AMCAT backend 12

Why AMCAT? 12

Key functionality – PLS-words and PLS-extract in action 13

Prototype 3: Cooperating with a web developer 18

Access to the web applications and their source code 20

First set of prototypes – self-contained shiny apps 20

Second set of prototypes – Shiny apps with AMCAT integration 20

Third set of prototypes – more advanced web technology 20

Key lessons learned and outlook 21

5

Purpose

The project OPTED: Observatory for Political Texts in European Democracies (Horizon 2020

Grant agreement 951832) outlines a European Research Infrastructure facilitating the large-scale

computational analysis of political texts in Europe. Work Package 5 focuses on texts produced in

the decision-making processes of national and supranational parliaments.

Objective 6 of the OPTED initiative highlights that the wealth of systematic information in large

collections of political text should not only be available to experienced researchers and analysts.

Rather, a key purpose of the future platform is to also provide an entry point for laymen – having

especially journalists, political practitioners, and not the least interested European citizens in mind.

One may think, for example, of a citizen who is interested in which party spoke about a certain topic

and how. One may think about experts trying to figure out whether certain policies are adequately

represented in political discourse. Or one may also think about a journalist who looks for structured

information on how politicians have positioned themselves on specific policies over time to

contextualize a contemporary debate. The key point is that these target audiences outside of academia

could gain enhanced insights on the functioning of contemporary European democracies if they get

access to the initially unstructured information hidden in large text corpora.

However, for extracting this information laymen audiences face notable barriers of entry. While

various OPTED work packages have generated relevant text data collections (as we did for

parliamentary speeches, bills, and laws in Deliverable 5.2 [link]) and provide analysis tutorials based

on open-source software (as we did for legislative debates in Deliverable D5.3 [link]), information

extraction still requires handling very large datasets, access to relevant software environments, and

advanced programming skills. This can quickly set off laymen audiences who potentially just want

to extract basic information (e.g. the prominence of certain keywords in political speeches), who

require only specific subsets of larger collections (e.g. legal texts mentioning certain keywords for

qualitative analysis), or who want to quickly assess a working hypothesis for deciding on whether to

invest in advanced analysis. Seen from this angle, researchers collecting large-scale political text

corpora should ideally also provide low-key access tools for non-technical audiences.

Yet, also the researchers face notable barriers of entry in this regard. Investing time in public access

tools is not highly rewarded in academic promotion logics which mostly revolve around scientific

publications. Moreover, the scarce resources in research projects can often not be allocated to buying

additional proprietary software or to hiring dedicated application developers. And while modern

https://cordis.europa.eu/project/id/951832/en
https://opted.eu/team/wp5-parliamentary-government-and-legal-texts/
https://chrauh.github.io/ParlLawSpeechTutorials
https://chrauh.github.io/ParlLawSpeechTutorials

6

political scientists are usually well trained in analytical programming, they rarely control advanced

software or web development skills. For these reasons, the added societal value of low-key public

access to scientific collections of political texts often remains unearthed.

With the purpose to lower such entry barriers for both data users and data providers, this

deliverable thus develops proof-of-concept prototypes for public access websites that (a) allow

non-technical users to extract systematic information from large text data and that (b) can be

built with a reasonable investment of time and resources for academic researchers.

As an exemplary case study we use our own ParlLawSpeech text collection (Deliverable 5.2 [link])

and build such prototypes for providing low-barrier access to the full texts of 3,172,026 plenary

speeches from eight European parliaments contained therein.

In the following pages we outline the key design principles that guide our approach (Section 2),

briefly sketch the development and functionality of three consecutive prototypes with increasing

levels of technical sophistication (Sections 3-5) and provide links to the resulting online apps as well

as to their source code (Section 6).

In conclusion our tools and experiences suggest that building low-key public access tools can be

achieved by researchers at reasonable levels of investment. But we also note that in-depth exchange

with technical experts inside and outside the OPTED initiative proved highly beneficial, while a

standing server infrastructure is needed to provide such access tools to the wider public. This

highlights two key services that a future platform for political text analysis in Europe could provide.

Key design principles

To address the dual purpose of lowering entry barriers for both potential data users and data providers,

we initially set up a list of basic design and functionality principles that informed our subsequent

development steps.

With a view to laymen audiences, we consider the following principles particularly important:

⮚ No prerequisites regarding computer skills or software: Potential users should be readily able

to interact with the tools without having to acquire additional skills, to read long explanations, or

https://chrauh.github.io/ParlLawSpeechTutorials

7

to install additional software. Specifically, we aimed at tools that work in any conventional web

browser.

⮚ Interactivity: To engage laymen users, the tools should allow them to ‘play’ with the data along

whatever is of interest to them. And to maintain their interest, they should receive quick and

quickly comprehensible results. This suggests that the tools should be interactive, responsive, and

provide visual information.

⮚ Optional user flexibility: Beyond quick results, users wishing to dig deeper should also have

additional degrees of freedom – either in terms of accessing the raw texts behind aggregated

numbers or in terms of alternative presentations of the extracted information. This suggests that

the tools should offer download options for raw and aggregated data.

⮚ Low-key text analyses first: This principle is derived from the three preceding ones. While

advanced methods such as topic models or semantic scaling, for example, can and do extract highly

relevant information from political text collections, they often build on additional assumptions or

knowledge about text classification algorithms that may set off laymen audiences or provide a

wrong sense of certainty. We thus rather first focus on simple keyword or phrase extraction tools

that are aggregated along well-known categories (in our case of parliamentary speeches time,

parties, and speakers). At the same time, we aim to provide links to expanded data descriptions

and/or tutorials for advanced analyses and allow raw data downloads for those users wishing to

go further.1

Implementing these principles quickly amounts to notable challenges in terms of technical skills and

costs for academics generating relevant text collections. With a view to these data providers, we thus

consider particularly the following two principles important for developing public access tools:

⮚ Open-source software: For academics open-source software has three key advantages. First, it is

usually available at no or low costs thus creating fewer or no additional financial burdens for

scarcely funded research projects. Second, open-source software is usually accompanied by

helpful online communities that offer help for specific technical challenges and customization of

1 Such download options are, of course, desirable from a user perspective and for replicable research but can be limited

by copyright restrictions of the original text data, especially if they come from proprietary sources or non-public

institutions and organizations. For further insights on intermediate solutions under the heading of “non-consumptive

research” in such instances, the reader may refer to the work in OPTED work package 7.

https://opted.eu/team/wp7-pre-processing-storage-and-data-sharing/

8

respective solutions. Third, open-source software allows for sharing the source code of particular

applications (as we do with this Deliverable, see below) thus providing examples and lowering the

entry barriers for others. Thus, we think that using and developing open-source tools maximizes

the proliferation of public access tools among the academic community.

⮚ Close to conventional analytic programming environments: Academics collecting large scale

text data are usually well versed in analytic programming environments. The closer the

development of public access tools stays to such environments (in terms of syntax for handling

text data as well as extracting, aggregating, and visualizing information), the lower are their

barriers of entry. As social science scholars employing text analysis tend to use R (a software for

statistical programming) or Python (a programming language), the development of public access

tools should also focus on these programming environments.

With these key considerations in mind, we started to develop prototypes around our own text data –

thereby perfectly emulating academics with little or no prior expertise in web development.

First set of prototypes: Self-contained Shiny apps

Why Shiny?

When looking for software that meets the above specified principles for potential data users and

academic data providers alike, our options quickly converged on Shiny.2 This framework ticks

virtually all boxes with regard to our initial considerations. Shiny is a web application framework that

has developed in the R ecosystem but, since its most recent installment, also handles Python.3

At its core, Shiny bridges the gap between data analysis in R or Python on the one hand, and web-

based interactivity on the other. It allows data providers to swiftly transform elements of the analytic

scripts that they write in their daily scientific work into visually engaging web applications without

the necessity of a particularly deep expertise in web development languages such as HTML, CSS, or

JavaScript (even though such knowledge does not hurt). Beyond low entry barriers for academics and

2 https://shiny.posit.co/ (last accessed: August 30, 2023)

3 As our own ParlLawSpeech data collection has been conducted in R we stuck with this programming environment also

for the prototype development summarized here.

https://shiny.posit.co/

9

high user interactivity, Shiny is furthermore geared to generating dashboards with textual, tabular or

visual data presentation, all powered in the background by any of the respective packages and

libraries that the open-source R or Python communities have to offer.

Shiny code functions through a dichotomy of a user interface (UI) and a server logic. The UI outlines

the visual layout of the application, detailing elements like input controls, plot areas, or text. The

Server logic, on the other side, defines and controls the computational reactions to user inputs,

harnessing the power of R to dynamically process data and relay results. As laymen users interact

with the application, Shiny – if set up appropriately – handles the communication between the UI and

server, providing real-time updates and rather fluid responsiveness.

By using Shiny, academics can largely stay within the syntax that they are used to from data analysis

projects, especially with regard to the server logic of any given app. However, it has to be noted that

especially the reactivity of the UI and the server logic adds a notable layer of complexity while more

advanced UIs require some engagement with basic elements of web technologies. It helps also in this

regard, that Shiny is also open source meaning that a large community of developers,4 helpful online

fora,5 and numerous example applications6 or style sheets7 can be relatively easily accessed.

For these reasons, Shiny appears optimal for our purposes and by sharing the source code we hope to

contribute and encourage others to improve, expand, and build on our initial ideas for using the Shiny

framework in granting public access to large text data collections.

However, one structural barrier remains. Beyond development, presenting a Shiny app to a broader

audience necessitates dealing with the issue of hosting. Shiny apps can be locally built (and

potentially also included in broader data releases for easing the access of users on their own

computers) but to reach an expansive audience, they require deployment on platforms equipped to

handle external web traffic while providing an R or Python environment on the backend. Useful paid

4 See, for example, https://github.com/topics/shiny-app (last accessed August 31, 2023)

5 See, e.g., https://stackoverflow.com/questions/tagged/shiny (last accessed August 31, 2023)

6 See, e.g., https://shiny.posit.co/r/gallery/ (last accessed August 31, 2023)

7 Cascading Style Sheets (CSS) provide a language used for defining the look and formatting of HTML documents. For

our applications we manually adapted the Cerulean Sheme (https://bootswatch.com/cerulean/) extracted from the

shinythemes package (https://rstudio.github.io/shinythemes/) to include OPTED colors and logos, for example. The

theme is provided in our source code as well.

https://github.com/topics/shiny-app
https://stackoverflow.com/questions/tagged/shiny
https://shiny.posit.co/r/gallery/
https://bootswatch.com/cerulean/
https://rstudio.github.io/shinythemes/

10

services (with helpful trial options) exist,8 but with the additionally accruing cost they are often not a

good solution for providing long-term data access by academic researchers who usually work in

fixed-duration projects. Importantly, Posit also offers a free and open source Shiny Server

environment9 that can be used in establishing an academically driven hosting platform. However,

setting up such a platform still requires public-facing server hardware and technically skilled staff to

set up and to maintain the server and its analytic backends – resources that not all universities or

research institutes can easily muster by themselves.10 Especially in this regard, we think, a future

European text analysis platform could provide much added value and benefits of scale for the

academic community and the laymen audiences we want to reach.

Key functionality of the two prototype apps

Having decided on a software and server framework, we then started to translate the above specified

design principles into first operational Shiny applications. As these first development steps had to be

taken in parallel to the ongoing ParlLawSpeech (PLS) data collection of WP5, we initially worked

with two corpora from ParlSpeech, our prior collection of parliamentary speeches.11 Considering the

actual functionality with a view to the above principles, we initially opted to build two separate public

access applications.

The first one – PLS-words – allows laymen users to (rather) quickly analyze the prominence of

specific keywords and phrases across very large numbers of parliamentary speeches. We present

detail on the user interface in section 4 below, but once a user has chosen the parliament and keyword

8 One prominent option is https://www.shinyapps.io/ (last accessed: August 31, 2023). Shinyapps.io also offers a free tier

which is very useful and convenient for deploying and testing apps but it is limited in the number of applications and,

importantly, their run time. Other paid services include cloud platforms like AWS or Google Cloud which also offer

flexible hosting opportunities, often leveraging virtual machines or Docker containers.

9 https://posit.co/download/shiny-server/ (last accessed: August 31, 2023)

10 In this regard our work here profited from the generous support of the project partner WZB Berlin Social Science

Center (in particular by Sabrina Milewsky) in setting up a respective environment.

11 Rauh, Christian; Schwalbach, Jan, 2020, "The ParlSpeech V2 data set: Full-text corpora of 6.3 million parliamentary

speeches in the key legislative chambers of nine representative democracies", https://doi.org/10.7910/DVN/L4OAKN ,

Harvard Dataverse, V1

https://www.shinyapps.io/
https://posit.co/download/shiny-server/
https://doi.org/10.7910/DVN/L4OAKN

11

(combinations) of interest to her or him, the R server backend of the app loads the respective corpus,

filters the respective speeches along keyword/phrase presence, and aggregates the resulting data

across time (months), political parties (as organized in the respective parliament), and individuals

speakers (members of parliaments and other persons with plenary speaking time).12 The user interface

then returns partially customizable and downloadable visualizations while also offering download

options for the aggregated data (for maximum flexibility in comma-separated ASCII files). In sum,

PLS-words allows non-technical users to quickly analyze the prominence of self-chosen keywords in

self-chosen parliaments over time, political parties, and individual speakers.

For users wishing to look behind these aggregated numbers (e.g., by reading respective speeches or

subjecting them to more advanced text analyses), a second app – PLS-extract – offers customizable

full-text downloads based on user choices on the parliament of interest and optional filters regarding

keyword presence in speech, date of speech, as well as party or name of speaker (for see user interface

see section 4 below). Based on these choices, the server backend of the app filters the larger corpora

and offers the resulting data in one of three user-chosen formats. Specifically, we offer tab-separated

ASCII files to be used with any kind of spreadsheet software, the binary .rds format to be used with

R, as well as .feather files, a fast and highly efficient data format that can be used with Python,

amongst others. In sum, PLS-extract facilitates data access by freeing users interested in specific

speech collections from downloading very large data dumps and filtering them locally with advanced

tools.

Notably, we designed both apps initially to be self-contained in the sense that they solely rely on the

R environment for frontend and backend while the apps also include the raw text corpora themselves.

This has advantages especially for academic data providers as it allows them to stay within an

environment that they use for their own analysis anyway while retaining full control over data

management without the need to rely on external technical support in this regard (apart from the need

to set up a hosting server, see above).

12 Our R backend relied particularly on the tidyverse libraries (https://www.tidyverse.org/) for data management, and on

quanteda (http://quanteda.io/) for the text analysis steps.

https://www.tidyverse.org/
http://quanteda.io/

12

Downsides of the self-contained solution

However, we also quickly learned that such a self-contained solution has limits especially when it

comes to very large text collections. On the one hand, including the data itself requires lots of memory

on the public-facing Shiny server which creates additional burden with regard to hardware

requirements. On the other hand, it may run against the principles of user interactivity and

responsiveness of the application as data loading and especially text filtering solely through an R

backend becomes comparatively slow.13 While the respective R tools maximize researcher degrees of

freedom and while waiting times of up to a couple of minutes are reasonable in a local data analysis

project, such dead times quickly alienate users from the wider public which is nowadays used to a

fast and responsive online environment.

Yet and still, we think that our initial self-contained proof-of-concept prototypes may be useful

starting points for the community and are useful for customizing them to smaller text collections.

Links to the operational web applications and their source code is thus provided in Section 6 below.

Prototypes 2: Shiny apps with AMCAT backend

In pushing our apps further to better user experiences with regard to interactivity and responsiveness,

especially the second annual meeting of the OPTED initiative during September 2022 in Amsterdam

proved extremely helpful. Here we learned in particular about the work of WP7 [link] on pre-

processing, storage and data sharing tools and the corresponding AMCAT infrastructure that was

further developed to that end.14

Why AMCAT?

While the AMCAT environment offers various useful tools for researchers with regard to data

annotation and also provides specific approaches to generate dashboards and basic visualizations,

13 We have tested different file formats and reading procedures as well as different text indexing approaches to optimize

speed, but could not push user waiting time below 10 seconds when also allowing for phrase search in a corpus of around

1 million parliamentary speeches. Some of these benchmarks are included in the public code repository of the apps.

14 https://amcat.nl/ (last accessed August 31, 2023)

https://opted.eu/team/wp7-pre-processing-storage-and-data-sharing/
https://amcat.nl/

13

especially the server backend attracted our attention. Four features stand out with a view to the

purpose of this deliverable.

First, the storage of text databases in AMCAT builds on Elasticsearch,15 a search engine that indexes

texts very efficiently and offers a reasonably well understandable query language. To us, AMCAT

thus offers improvements with regard to generating quick search results across large text corpora

and enhanced user functionality. Second, AMCAT servers can be addressed through an automated

programming interface (API). For us this means that we do not have to store the text data locally with

the applications themselves and can rather send requests to and receive results from an AMCAT server

elsewhere. Third, Johannes Gruber form Work Package 7 has developed an R package that binds our

preferred programming environment to the AMCAT API.16 This allows us to address AMCAT servers

from within our extant R backend of the apps. Fourth and finally, AMCAT is open-source. To us, this

renders reliance on the respective servers sustainable as the servers can be at least setup elsewhere

free of monetary cost if infrastructural conditions in individual universities or research institutes

change.

We thus decided to use AMCAT as a backend for the PLS-words and PLS-extract apps. Johannes

Gruber (WP7) and Paul Baluff (WP3) kindly set up respective AMCAT servers in Amsterdam and

Vienna and allowed us to upload our large ParlLawSpeech data that we had collected in the meantime.

We then re-programmed our apps on the basis of these servers, gaining marked improvements in

terms of speed, responsiveness, and usability for non-technical audiences.

As a side product we could also offer useful feedback for software development by the AMCAT and

Vienna teams while generating examples, such as the upload script in the source code below, that in

the future may assist other data providers interested in linking AMCAT and R projects. This points

to another key added-value that a future platform of political text analysis in Europe could

offer: regular exchange among the relevant community offers highly productive mutual

learning that not only promotes academic cooperation but also facilitates public access to

scholarly data collections.

15 https://en.wikipedia.org/wiki/Elasticsearch (last accessed August 31, 2023)

16 https://github.com/ccs-amsterdam/amcat4r (last accessed August 31, 2023)

https://en.wikipedia.org/wiki/Elasticsearch
https://github.com/ccs-amsterdam/amcat4r

14

Key functionality – PLS-words and PLS-extract in action

We now turn to the user interface of the thus created applications. The home screen of the PLS-words

app welcomes users with a very brief introduction on what is on offer (while providing direct web

links to further background information). It furthermore contains two entry boxes in which users can

enter their choices regarding the parliament and keywords of interest to them.

Currently the app features the development version of ParlLawSpeech (which is currently validated

and prepared for public release) and thus includes 3,172,026 speeches from the major parliamentary

chambers in seven European states (Austria, Croatia, Czech Republic, Denmark, Germany, and

Hungary) as well as the European Parliament – a total of almost six gigabytes of text data and

corresponding meta information.

Once the user has submitted her or his choices, a small info box returns information on the text

collection that has been searched. Figure 1 provides an example in which the user wants to learn about

the prominence of migration related terms in the German Bundestag.

FIGURE 1: HOME SCREEN OF THE PLS-WORDS APP WITH EXEMPLARY USER CHOICES

The header of the app then allows the user to jump to the results aggregated over time, political

parties, or speakers. This is the point in time when the data is actually called and aggregated from the

AMCAT server in the backend and some few seconds of waiting time may occur about which the

user is informed in a friendly modal dialogue.

Each of the three results panes then offers a visual summary of the key patterns the user request has

produced. When hovering over the plot, users get some customization and can download the

visualization as a .png file directly (if the hosting server allows). Adaptive labels of the plots as well

as a small box inform the users about what the data represent. Moreover, each of the three results

15

panes provides a download button by which the user can store the data at the selected level of

aggregation locally as .csv files to be used further with any software that can handle spreadsheets.

The three subsequent figures below illustrate this along the exemplary user search seen above.

FIGURE 2: PLS-WORDS APP RESULTS AGGREGATED OVER TIME

FIGURE 3: PLS-WORDS APP RESULTS AGGREGATED OVER POLITICAL PARTIES

FIGURE 4: PLS-WORDS APP RESULTS AGGREGATED OVER PARLIAMENTARY SPEAKERS

16

Finally, the ‘about’ page provides users with additional background information, authors, and –

importantly for academic work and public recognition – details about citation requirements (this is

also referred to in all three results panes seen above).

FIGURE 5: PLS-WORDS APP – ABOUT PAGE

For non-technical users who have by then acquired a taste for digging further into text analysis or

who want to gain additional qualitative insight from the full texts matching their interest, our second

app – PLS-extract – offers the ability to extract specific data from the AMCAT servers running in the

backend and download their selection for local processing by whatever means they prefer.

In terms of user interface and background information on the ‘about’ page we follow the same design

principles and layouts as above, but the home screen is different. The user can use the right-hand box

to select the parliament of interest and the apply optional filters with regard to keywords in the speech

text, date of the speech, political party of speaker, or name of individual speakers (where multiple

choices are allowed throughout). Upon submission of the choices, the app requests the corresponding

full texts from the AMCAT server, which may take some time if the user choices result in large

collections themselves. The buttons on the lower end of the page then allow users to store the resulting

full-text data locally in one of three conventional formats (see above).

Figure 6 provides an example where a user is interested in any Bundestag speech by Angela Merkel

that contained certain migration-related keywords in the full year 2015 - producing a small

downloadable collection of six speeches.

17

FIGURE 6: PLS-EXTRACT APP – HOME/DOWNLOAD SCREEN

With these two apps, we hope to have demonstrated that researchers can themselves facilitate

public access to very large collections of political text also for non-technical users if and when they

can access standing server infrastructures and have opportunities for mutual exchange and

cooperation.

18

Prototype 3: Cooperating with a web developer

Of course, modern web development technology offers much further potential with regard to

advanced user experience and user interface design. Academic researchers alone, however, can hardly

fully embark on following these technologies in detail by acquiring highly specialized skill sets.

Yet and still, we would be interested in how we could push the basic design principles developed here

further. Thus, we were very happy when Peter Baluff (OPTED WP3) brought us in contact with Peter

Walchhofer, a computer and data science student form the Technical University Vienna who was

looking for data in the context of a term paper project. We took this opportunity to learn more about

how a professional would go about increasing public access to large text collections, met up with

Peter Walchofer to discuss our key design principles and to then share a development version of our

ParlLawSpeech text collection.

On this basis, Peter Walchhofer started to develop an application, notably also using AMCAT as a

server backend, but exploiting more advanced web frameworks and user interface technologies for

the frontend.17 The resulting application “ParlSpeechTracker” is visually very appealing, offers

additional functionality (Figure 7), and improves markedly over our apps in terms allowing users to

qualitatively engage with the full text directly and interactively in the web browser (Figure 8).

This example shows that fostering such co-operations between academics and web professionals

in a more systematic manner would result in more appealing, more user-friendly, and more

informative access tools to large scale text corpora also for laymen audiences. Enabling such

co-operations also in the future would thus be a valuable service that a future platform for

political text analysis in Europe could provide.

17 In particular, the Python-based Flask (https://en.wikipedia.org/wiki/Flask_(web_framework)) and ReactJS for java-

based user interfaces (https://react.dev/)

https://en.wikipedia.org/wiki/Flask_(web_framework)
https://react.dev/

19

FIGURE 7: PARLSPEECHTRACKER – ADDITIONAL FUNCTIONALITY

FIGURE 8: PARLSPEECHTRACKER – DIRECT WEB ENGAGEMENT WITH RAW TEXT

20

Access to the web applications and their source code

First set of prototypes – self-contained shiny apps

As discussed above, these apps are somewhat slow and clunky for a text collection of our size but are

provided for documentation and reference purposes nevertheless. Users willing to play with the

ParlLawSpeech data should rather use the second and third sets of prototypes.

⮚ PLS-words app: https://shiny2.wzb.eu/rauh/PLS-words/

⮚ PLS-extract app: https://shiny2.wzb.eu/rauh/PLS-extract/

⮚ Source code: https://github.com/ChRauh/OPTED-WP5-Apps

Second set of prototypes – Shiny apps with AMCAT integration

⮚ PLS-words app: https://shiny2.wzb.eu/rauh/PLS-words-AMCAT/

⮚ PLS-extract app: https://shiny2.wzb.eu/rauh/PLS-extract-AMCAT/

⮚ Source code: https://github.com/ChRauh/OPTED-WP5-Apps-AMCAT/

Third set of prototypes – more advanced web technology

⮚ ParlSpeechTracker: https://parliaments.opted.eu/

https://shiny2.wzb.eu/rauh/PLS-words/
https://shiny2.wzb.eu/rauh/PLS-extract/
https://github.com/ChRauh/OPTED-WP5-Apps
https://shiny2.wzb.eu/rauh/PLS-words-AMCAT/
https://shiny2.wzb.eu/rauh/PLS-extract-AMCAT/
https://github.com/ChRauh/OPTED-WP5-Apps-AMCAT/
https://parliaments.opted.eu/

21

Outlook and lessons learned for a future platform

In conclusion we think that the experiences summarized here as well as the sets of functional web

applications that we provide offer two first of two proof-of-concept insights. First, online web

applications can significantly lower the barriers of entry for non-technical users when it comes to

accessing the wealth of information hidden in large academic text collections. Second, academics

themselves can in principle build such applications at reasonable levels of investment in terms of time

and resources.

However, our experiences also highlight that a future platform for political text analysis in Europe

would generate significant added value for both academics as data providers and potential users such

as journalists, public officials, or interested citizens in particular. Our discussion flags three services

in particular by which such a platform would also support the purpose of this deliverable in the long

run:

⮚ Organize and enable regular in-depth exchange among academic withs different technical skill

sets regarding text data analysis, data storage, and data visualization

⮚ Provide a standing server structure at which academic data providers could host their

applications and thus enhance public-facing communication of and access to the efforts

behind large scale text data collections

⮚ Fund respectively educated and/or skilled staff - “research engineers” - who can maintain

these servers and who provide additional expertise on web platforms and user interface

technologies.

Along these three steps, we think, a future platform for political text analysis in Europe would

generate a sustainable foundation on which more user-friendly applications such as those proto-typed

in this deliverable could grow so as to improve the wider public’s access to the systematic and

democratically relevant information hidden in the large text collections that academic researchers

provide.

